A computer program for statistical power analysis

CRT-POWER

POWER ANALYSIS FOR CLUSTER-RANDOMIZED TRIALS

- **TWO, THREE, AND FOUR LEVEL DESIGNS**
- **HIERARCHICAL AND RANDOMIZED-BLOCK DESIGNS**
- **CONTINUOUS AND BINARY OUTCOMES**

Binary

- **Example shown**

Select the type of outcome:
- `Binary`
- `Continuous`

Assign a name to each level

Randomize at any level

Enter the ICC or the span of risks

Enter covariates

Fixed or random effects at each level

Set the cost per unit

Four-level randomized-blocks design, odds ratio

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of units</th>
<th>ICC</th>
<th>Span of effect</th>
<th>Covariates, R-sq</th>
<th>Model</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cities (Blocked)</td>
<td>Blocked (25)</td>
<td>0.011</td>
<td>0.40</td>
<td>2</td>
<td>Random</td>
<td>Blocked (2000)</td>
</tr>
<tr>
<td>Hospitals (Randomized)</td>
<td>Treated (2)</td>
<td>0.027</td>
<td>0.40</td>
<td>2</td>
<td>Random</td>
<td>Treated (1000)</td>
</tr>
<tr>
<td>Doctors (Nested)</td>
<td>Treated (5)</td>
<td>0.027</td>
<td>0.15</td>
<td>2</td>
<td>Random</td>
<td>Treated (1000)</td>
</tr>
<tr>
<td>Patients (Nested)</td>
<td>Treated (6)</td>
<td>0.027</td>
<td>0.15</td>
<td>2</td>
<td>Random</td>
<td>Treated (200)</td>
</tr>
</tbody>
</table>

Effect size

- Event rate in control group: 0.400
- Odds ratio: 0.700
- Event rate in treated group: 0.318

Alpha = 0.050, two-tailed

Cost = $1,250,000

Power = 90%

The program finds the most cost-effective number of units at each level to yield the desired power.

Find the most cost-effective design AUTOMATICALLY
Step 1. Specify the design and parameters

Suppose you are planning the study outlined in the screen-shot below. Cities include both conditions. Hospitals are randomized to either treated or control. Doctors are nested within hospitals. Patients are nested within doctors. The ICCs, covariates, and costs for each level are shown in the picture.

You are considering the option shown on the screen—15 cities, 2 hospitals per city, 12 doctors per hospital, 12 patients per doctor. This will yield power of 90% at a cost of $2,538,000.

By simply increasing the number of cities and decreasing the number of doctors and patients, we can cut the study’s cost by more than half, while keeping power at 90%. You may also explore other options, such as randomizing at another level, or adding covariates.

Step 2. Click ‘Optimal design wizard’ (see back page). The program shows the most cost-effective number of units at each level.

Power is 90%
Cost is $2,538,000

Power is 90%
Cost is $1,250,000
Step 3. Create a report (an excerpt is shown here)

Design

The study will employ a four-level randomized block design, using patients, within doctors, within hospitals, within cities. Cities are blocked, hospitals are randomized, doctors are nested within hospitals, and patients are nested within doctors (see table).

<table>
<thead>
<tr>
<th>Units</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>Control</td>
</tr>
<tr>
<td>Cities</td>
<td>25</td>
</tr>
<tr>
<td>Hospitals</td>
<td>2</td>
</tr>
<tr>
<td>Doctors</td>
<td>5</td>
</tr>
<tr>
<td>Patients</td>
<td>6</td>
</tr>
</tbody>
</table>

The ICCs for cities, hospitals, and doctors are 0.011, 0.027, and 0.027. Equivalently, the control group risks (prevalence) will span 21 percentage points across cities, 32 points across hospitals within a city, and 32 points across doctors within a hospital. — Continues —

Step 4. Create a table and graph.

Power and cost as function of number of cities

- Use these graphs at meetings to develop an appropriate study plan
- Include the graphs in your reports and grant applications
Tools and Features

Enter either the span of risks (prevalence) or the ICC.

The program translates the ICC into a span of risks (or vice versa).
Use this feature to ensure that the ICCs are both plausible and transparent.

Automatically find the optimal (most cost-effective) number of units at each level.

The program allows you to constrain the number of units at one or more levels, and will then adjust the remaining levels.

Features

Number of levels
Two, three, or four levels. For example, students within classes, teachers, schools. Or patients within wards, hospitals, cities.

Hierarchical and randomized block designs
Randomize at level 4, 3, 2, or 1

Covariates
Allowed at all levels simultaneously

Costs
May be set separately for each group

Number of units
May be set separately for each group

Effect size
Standardized mean difference d, risk difference, odds ratio

Statistical models
Random effects of fixed effect at each level, subject to logical constraints

Reports
Create a detailed text report with tables, and export to Word

Tables and Graphs
Power and cost as a function of any two factors.

Find the optimal design

Find the minimum detectable effect size